近日,華中農(nóng)業(yè)大學(xué)柑橘全程機(jī)械化平臺(tái)研究團(tuán)隊(duì)以“non-destructive fruit firmness evaluation using a soft gripper and vision-based tactile sensing”為題在農(nóng)業(yè)計(jì)算機(jī)與電子信息領(lǐng)域期刊computers and electronics in agriculture發(fā)表研究論文。該研究通過(guò)視觸覺(jué)傳感柔性末端機(jī)械爪與深度學(xué)習(xí)方法,實(shí)現(xiàn)了對(duì)球形水果的穩(wěn)定抓取和成熟度準(zhǔn)確分類。
果實(shí)硬度是判斷其成熟程度的重要指標(biāo)之一,反映了內(nèi)部淀粉物質(zhì)的形態(tài)變化,可以更準(zhǔn)確地指示內(nèi)部組織的成熟度,對(duì)其準(zhǔn)確評(píng)估對(duì)采后管理決策具有重要參考意義。團(tuán)隊(duì)受到鰭條效應(yīng)啟發(fā)設(shè)計(jì)了一種軟材料制作的柔性機(jī)械爪,其具有穩(wěn)定無(wú)損抓取水果的功能的同時(shí),可聯(lián)合深度學(xué)習(xí)網(wǎng)絡(luò)評(píng)估抓取過(guò)程中的作用力大小,進(jìn)而實(shí)現(xiàn)判斷水果硬度和成熟程度的功能。
研究首先使用有限元建模和相關(guān)實(shí)驗(yàn)證明了柔性材料制作的機(jī)械爪具備實(shí)現(xiàn)穩(wěn)定抓取同時(shí)、兼具非破壞性的優(yōu)勢(shì);隨后結(jié)合視覺(jué)技術(shù)記錄機(jī)械爪與水果接觸時(shí)的變形特性,提出的深度學(xué)習(xí)網(wǎng)絡(luò)的序列式圖像信息處理模型——包括卷積神經(jīng)網(wǎng)絡(luò)、長(zhǎng)短時(shí)記憶單元,使得該網(wǎng)絡(luò)模型能夠?qū)④洐C(jī)械爪在時(shí)序下的變形特征,進(jìn)行作用力分析進(jìn)而推斷水果硬度與成熟度。研究以西紅柿和油桃為試驗(yàn)樣本,驗(yàn)證了柔性機(jī)械爪的抓取穩(wěn)定性,并采集了相關(guān)序列圖像數(shù)據(jù)集與水果硬度預(yù)測(cè)的深度學(xué)習(xí)網(wǎng)絡(luò)。
同時(shí)為了方便現(xiàn)實(shí)場(chǎng)景中的應(yīng)用,研究團(tuán)隊(duì)將控制算法和深度學(xué)習(xí)模型移植到了邊緣計(jì)算設(shè)備上,并將該套系統(tǒng)搭載在機(jī)械臂上,提高了運(yùn)動(dòng)自由度,預(yù)期可實(shí)現(xiàn)生產(chǎn)線上的基于硬度的水果成熟度分級(jí)。同時(shí)制作成本低廉,準(zhǔn)確度較高,與其他水果硬度與成熟度檢測(cè)手段相比應(yīng)用潛力巨大。
我校工學(xué)院博士研究生林家豪和本科生胡晴為本論文共同第一作者,工學(xué)院副研究員陳耀暉和澳洲聯(lián)邦科學(xué)與工業(yè)研究組織博士后研究員王興為共同通訊作者。工學(xué)院李善軍教授參與了論文的指導(dǎo)工作,碩士杜璇和理學(xué)院碩士趙亮共同參與了論文研究。
【英文摘要】
as fruit firmness is a crucial characteristic associated with the maturity level, its accurate estimation is of great importance to post-harvest processing and wholesale in the industry. benefiting from the advances of soft robotics, a soft gripper with simultaneous compliant deformation and tactile sensing is proposed in this study for the fruit firmness classification. the gripper design inspired by the fin ray effect can achieve active deformation, which helps simplify the actuation system and improve the delicate manipulation capability. finite element modelling, along with experimental tests, is first utilized to validate the gripper's feasibility in compliant and safe fruit grasping, and respiratory tests are then conducted to further demonstrate the non-destructive nature. moreover, fruit–gripper interaction is captured by visual sensors and then processed using an attention-based cnn–lstm algorithm to predict firmness information. tomatoes and nectarines are chosen as the sample fruit for experimental validation. r? values of their firmness prediction are 0.795 and 0.753, and the accuracy of maturity grading is 84.6% and 81.5%, respectively. in general, the soft gripper provides a promising solution for both safe grasping and non-destructive firmness evaluation, and it is expected to be integrated into automated production lines to pack fruit based on different firmness levels.【閱讀原文】